Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
2.
Biomed Pharmacother ; 162: 114636, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2269616

ABSTRACT

Ritonavir, originally developed as HIV protease inhibitor, is widely used as a booster in several HIV pharmacotherapy regimens and more recently in Covid-19 treatment (e.g., Paxlovid). Its boosting capacity is due to the highly potent irreversible inhibition of the cytochrome P450 (CYP) 3 A enzyme, thereby enhancing the plasma exposure to coadministered drugs metabolized by CYP3A. Typically used booster doses of ritonavir are 100-200 mg once or twice daily. This review aims to address several aspects of this booster drug, including the possibility to use lower ritonavir doses, 20 mg for instance, resulting in partial CYP3A inactivation in patients. If complete CYP3A inhibition is not needed, lower ritonavir doses could be used, thereby reducing unwanted side effects. In this context, there are contradictory reports on the actual recovery time of CYP3A activity after ritonavir discontinuation, but probably this will take at least one day. In addition to ritonavir's CYP3A inhibitory effect, it can also induce and/or inhibit other CYP enzymes and drug transporters, albeit to a lesser extent. Although ritonavir thus exhibits gene induction capacities, with respect to CYP3A activity the inhibition capacity clearly predominates. Another potent CYP3A inhibitor, the ritonavir analog cobicistat, has been reported to lack the ability to induce enzyme and transporter genes. This might result in a more favorable drug-drug interaction profile compared to ritonavir, although the actual benefit appears to be limited. Indeed, ritonavir is still the clinically most used pharmacokinetic enhancer, indicating that its side effects are well manageable, even in chronic administration regimens.


Subject(s)
COVID-19 , HIV Protease Inhibitors , Humans , Ritonavir/pharmacology , Cytochrome P-450 CYP3A/metabolism , Pharmaceutical Preparations , COVID-19 Drug Treatment , Cytochrome P-450 Enzyme System/metabolism , Drug Interactions
3.
Viruses ; 14(11)2022 Nov 17.
Article in English | MEDLINE | ID: covidwho-2115935

ABSTRACT

Despite the rapid development of efficient and safe vaccines against COVID-19, the need to confine the pandemic and treat infected individuals on an outpatient basis has led to the approval of oral antiviral agents. Taking into account the viral kinetic pattern of SARS-CoV-2, it is of high importance to intervene at the early stages of the disease. A protease inhibitor called nirmatrelvir coupled with ritonavir (NMV/r), which acts as a CYP3A inhibitor, delivered as an oral formulation, has shown much promise in preventing disease progression in high-risk patients with no need for supplemental oxygen administration. Real-world data seem to confirm the drug combination's efficacy and safety against all viral variants of concern in adult populations. Although, not fully clarified, viral rebound and recurrence of COVID-19 symptoms have been described following treatment; however, more data on potential resistance issues concerning the Mpro gene, which acts as the drug's therapeutic target, are needed. NMV/r has been a gamechanger in the fight against the pandemic by preventing hospitalizations and halting disease severity; therefore, more research on future development and greater awareness on its use are warranted.


Subject(s)
COVID-19 Drug Treatment , Ritonavir , Adult , Humans , Ritonavir/therapeutic use , Ritonavir/pharmacology , Antiviral Agents/therapeutic use , Antiviral Agents/pharmacology , COVID-19 Vaccines , SARS-CoV-2/genetics
5.
Molecules ; 27(19)2022 Sep 27.
Article in English | MEDLINE | ID: covidwho-2066276

ABSTRACT

The recent coronavirus disease (COVID-19) outbreak in Wuhan, China, has led to millions of infections and the death of approximately one million people. No targeted therapeutics are currently available, and only a few efficient treatment options are accessible. Many researchers are investigating active compounds from natural plant sources that may inhibit COVID-19 proliferation. Flavonoids are generally present in our diet, as well as traditional medicines and are effective against various diseases. Thus, here, we reviewed the potential of flavonoids against crucial proteins involved in the coronavirus infectious cycle. The fundamentals of coronaviruses, the structures of SARS-CoV-2, and the mechanism of its entry into the host's body have also been discussed. In silico studies have been successfully employed to study the interaction of flavonoids against COVID-19 Mpro, spike protein PLpro, and other interactive sites for its possible inhibition. Recent studies showed that many flavonoids such as hesperidin, amentoflavone, rutin, diosmin, apiin, and many other flavonoids have a higher affinity with Mpro and lower binding energy than currently used drugs such as hydroxylchloroquine, nelfinavir, ritonavir, and lopinavir. Thus, these compounds can be developed as specific therapeutic agents against COVID-19, but need further in vitro and in vivo studies to validate these compounds and pave the way for drug discovery.


Subject(s)
COVID-19 Drug Treatment , Diosmin , Hesperidin , Antiviral Agents/chemistry , Flavonoids/chemistry , Flavonoids/pharmacology , Humans , Lopinavir/chemistry , Molecular Docking Simulation , Nelfinavir , Ritonavir/chemistry , Ritonavir/pharmacology , Rutin , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism
7.
Adv Sci (Weinh) ; 9(30): e2203388, 2022 10.
Article in English | MEDLINE | ID: covidwho-2013319

ABSTRACT

Coronavirus disease 2019 continues to spread worldwide. Given the urgent need for effective treatments, many clinical trials are ongoing through repurposing approved drugs. However, clinical data regarding the cardiotoxicity of these drugs are limited. Human pluripotent stem cell-derived cardiomyocytes (hCMs) represent a powerful tool for assessing drug-induced cardiotoxicity. Here, by using hCMs, it is demonstrated that four antiviral drugs, namely, apilimod, remdesivir, ritonavir, and lopinavir, exhibit cardiotoxicity in terms of inducing cell death, sarcomere disarray, and dysregulation of calcium handling and contraction, at clinically relevant concentrations. Human engineered heart tissue (hEHT) model is used to further evaluate the cardiotoxic effects of these drugs and it is found that they weaken hEHT contractile function. RNA-seq analysis reveals that the expression of genes that regulate cardiomyocyte function, such as sarcomere organization (TNNT2, MYH6) and ion homeostasis (ATP2A2, HCN4), is significantly altered after drug treatments. Using high-throughput screening of approved drugs, it is found that ceftiofur hydrochloride, astaxanthin, and quetiapine fumarate can ameliorate the cardiotoxicity of remdesivir, with astaxanthin being the most prominent one. These results warrant caution and careful monitoring when prescribing these therapies in patients and provide drug candidates to limit remdesivir-induced cardiotoxicity.


Subject(s)
COVID-19 Drug Treatment , Induced Pluripotent Stem Cells , Pluripotent Stem Cells , Humans , Cardiotoxicity/etiology , Cardiotoxicity/metabolism , Myocytes, Cardiac/metabolism , Induced Pluripotent Stem Cells/physiology , Calcium/metabolism , Lopinavir/metabolism , Lopinavir/pharmacology , Ritonavir/metabolism , Ritonavir/pharmacology , Quetiapine Fumarate/metabolism , Quetiapine Fumarate/pharmacology , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Pluripotent Stem Cells/metabolism , Antiviral Agents/adverse effects
8.
Int J Mol Sci ; 23(17)2022 Aug 30.
Article in English | MEDLINE | ID: covidwho-2006047

ABSTRACT

Ritonavir is the most potent cytochrome P450 (CYP) 3A4 inhibitor in clinical use and is often applied as a booster for drugs with low oral bioavailability due to CYP3A4-mediated biotransformation, as in the treatment of HIV (e.g., lopinavir/ritonavir) and more recently COVID-19 (Paxlovid or nirmatrelvir/ritonavir). Despite its clinical importance, the exact mechanism of ritonavir-mediated CYP3A4 inactivation is still not fully understood. Nonetheless, ritonavir is clearly a potent mechanism-based inactivator, which irreversibly blocks CYP3A4. Here, we discuss four fundamentally different mechanisms proposed for this irreversible inactivation/inhibition, namely the (I) formation of a metabolic-intermediate complex (MIC), tightly coordinating to the heme group; (II) strong ligation of unmodified ritonavir to the heme iron; (III) heme destruction; and (IV) covalent attachment of a reactive ritonavir intermediate to the CYP3A4 apoprotein. Ritonavir further appears to inactivate CYP3A4 and CYP3A5 with similar potency, which is important since ritonavir is applied in patients of all ethnicities. Although it is currently not possible to conclude what the primary mechanism of action in vivo is, it is unlikely that any of the proposed mechanisms are fundamentally wrong. We, therefore, propose that ritonavir markedly inactivates CYP3A through a mixed set of mechanisms. This functional redundancy may well contribute to its overall inhibitory efficacy.


Subject(s)
COVID-19 Drug Treatment , Ritonavir , Cytochrome P-450 CYP3A/metabolism , Cytochrome P-450 CYP3A Inhibitors/pharmacology , Heme/metabolism , Humans , Ritonavir/pharmacology
9.
Dtsch Arztebl Int ; 119(15): 263-269, 2022 04 15.
Article in English | MEDLINE | ID: covidwho-1952185

ABSTRACT

BACKGROUND: Five-day oral therapies against early COVID-19 infection have recently been conditionally approved in Europe. In the drug combination nirmatrelvir + ritonavir (nirmatrelvir/r), the active agent, nirmatrelvir, is made bioavailable in clinically adequate amounts by the additional administration of a potent inhibitor of its first-pass metabolism by way of cytochrome P450 [CYP] 3A in the gut and liver. In view of the central role of CYP3A in the clearance of many different kinds of drugs, and the fact that many patients with COVID-19 are taking multiple drugs to treat other conditions, it is important to assess the potential for drug interactions when nirmatrelvir/r is given, and to minimize the risks associated with such interactions. METHODS: We defined the interaction profile of ritonavir on the basis of information derived from two databases (Medline, GoogleScholar), three standard electronic texts on drug interactions, and manufacturer-supplied drug information. We compiled a list of drugs and their potentially relevant interactions, developed a risk min - imization algorithm, and applied it to the substances in question. We also compiled a list of commonly prescribed drugs for which there is no risk of interaction with nirmatrelvir/r. RESULTS: Out of 190 drugs and drug combinations, 57 do not need any special measures when given in combination with brief, low-dose ritonavir treatment, while 15 require dose modification or a therapeutic alternative, 8 can be temporarily discontinued, 9 contraindicate ritonavir use, and 102 should preferably be combined with a different treatment. CONCLUSION: We have proposed measures that are simple to carry out for the main types of drug that can interact with ritonavir. These measures can be implemented under quarantine conditions before starting a 5-day treatment with nirmatrelvir/r.


Subject(s)
COVID-19 , Cytochrome P-450 CYP3A , Drug Interactions , Humans , Lactams , Leucine , Nitriles , Proline , Ritonavir/pharmacology , Ritonavir/therapeutic use
10.
Antimicrob Agents Chemother ; 66(8): e0240421, 2022 08 16.
Article in English | MEDLINE | ID: covidwho-1949959

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has emerged to cause pandemic respiratory disease in the past 2 years, leading to significant worldwide morbidity and mortality. At the beginning of the pandemic, only nonspecific treatments were available, but recently two oral antivirals have received emergency use authorization from the U.S. Food and Drug Administration for the treatment of mild to moderate coronavirus disease (COVID-19). Molnupiravir targets the viral polymerase and causes lethal mutations within the virus during replication. Nirmatrelvir targets SARS-CoV-2's main protease, and it is combined with ritonavir to delay its metabolism and allow nirmatrelvir to inhibit proteolytic cleavage of viral polyproteins during replication, preventing efficient virus production. Both drugs inhibit in vitro viral replication of all variants tested to date. Each is taken orally twice daily for 5 days. When started in the first 5 days of illness in persons at risk for complications due to COVID-19, molnupiravir and nirmatrelvir/ritonavir significantly decreased severe outcomes (hospitalizations and death) with adjusted relative risk reductions of 30% and 88%, respectively, for the two treatments. Molnupiravir should not be used in children or pregnant persons due to concerns about potential toxicity, and reliable contraception should be used in persons of childbearing potential. Nirmatrelvir/ritonavir may cause significant drug-to-drug interactions that limit its use in persons taking certain medications metabolized by certain cytochrome P450 enzymes. Both treatment regimens are important additions to the management of early COVID-19 in at-risk patients in the outpatient setting.


Subject(s)
Anti-Infective Agents , COVID-19 Drug Treatment , Antiviral Agents/pharmacology , Child , Cytidine/analogs & derivatives , Humans , Hydroxylamines , Ritonavir/pharmacology , Ritonavir/therapeutic use , SARS-CoV-2
12.
Viruses ; 14(5)2022 05 20.
Article in English | MEDLINE | ID: covidwho-1875811

ABSTRACT

Paxlovid is a promising, orally bioavailable novel drug for SARS-CoV-2 with excellent safety profiles. Our main goal here is to explore the pharmacometric features of this new antiviral. To provide a detailed assessment of Paxlovid, we propose a hybrid multiscale mathematical approach. We demonstrate that the results of the present in silico evaluation match the clinical expectations remarkably well: on the one hand, our computations successfully replicate the outcome of an actual in vitro experiment; on the other hand, we verify both the sufficiency and the necessity of Paxlovid's two main components (nirmatrelvir and ritonavir) for a simplified in vivo case. Moreover, in the simulated context of our computational framework, we visualize the importance of early interventions and identify the time window where a unit-length delay causes the highest level of tissue damage. Finally, the results' sensitivity to the diffusion coefficient of the virus is explored in detail.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Antiviral Agents/pharmacology , Drug Combinations , Humans , Lactams , Leucine , Nitriles , Proline , Ritonavir/pharmacology
13.
Curr Drug Res Rev ; 14(3): 203-214, 2022.
Article in English | MEDLINE | ID: covidwho-1875265

ABSTRACT

BACKGROUND: COVID-19, first detected in Wuhan, China, has evolved into a lifethreatening pandemic spread across six continents, with the global case count being more than 243 million, and mortality over 4.95 million, along with causing significant morbidity. It has initiated an era of research on repurposed drugs such as hydroxychloroquine, lopinavir/ritonavir, corticosteroids, remedesivir, ivermectin, alongside selective antivirals to treat or prevent COVID- 19. Molnupiravir is an orally available emerging antiviral drug considered highly promising for COVID-19. METHODS AND RESULTS: We have performed a scoping review for the use of molnupiravir against SARS-CoV-2 and COVID-19. It acts by inhibiting RNA-dependent RNA polymerase (RdRp), and exhibits broad-spectrum antiviral activity. Preclinical studies have evaluated the therapeutic efficacy as well as prophylactic activity of molnupiravir against SARS CoV-2 in various animal models that include ferrets, hamsters, mice, immunodeficient mice implanted with human lung tissue and cell cultures, in various doses ranging from 5-300 mg/kg, and results have been encouraging. Initial evidence of safety and efficacy from early phase clinical studies has been encouraging too, and recent results from a large phase 3 global trial have shown significant benefits among symptomatic outpatients. Other late-phase clinical trials are still underway with the aim of establishing molnulpiravir as a therapeutic option for COVID-19, particularly for non-hospitalized patients. CONCLUSION AND RELEVANCE: On the basis of the limited evidence available as of now, molnupiravir could prove to be a promising oral therapy, worthy of further exploration of its utility for both treatment and prevention of COVID-19 in humans. Elaborate clinical evaluation is further warranted to confirm whether the results are replicable to the clinical scenario among outpatients to reduce the chance of progression to more severe disease.


Subject(s)
COVID-19 Drug Treatment , Cricetinae , Humans , Animals , Mice , Lopinavir/pharmacology , Lopinavir/therapeutic use , Ritonavir/pharmacology , Ritonavir/therapeutic use , SARS-CoV-2 , Hydroxychloroquine/pharmacology , Hydroxychloroquine/therapeutic use , Ivermectin , Ferrets , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , RNA-Dependent RNA Polymerase , Adrenal Cortex Hormones
14.
Int J Mol Sci ; 23(9)2022 Apr 30.
Article in English | MEDLINE | ID: covidwho-1820294

ABSTRACT

Connexin43 (Cx43) hemichannels form a pathway for cellular communication between the cell and its extracellular environment. Under pathological conditions, Cx43 hemichannels release adenosine triphosphate (ATP), which triggers inflammation. Over the past two years, azithromycin, chloroquine, dexamethasone, favipiravir, hydroxychloroquine, lopinavir, remdesivir, ribavirin, and ritonavir have been proposed as drugs for the treatment of the coronavirus disease 2019 (COVID-19), which is associated with prominent systemic inflammation. The current study aimed to investigate if Cx43 hemichannels, being key players in inflammation, could be affected by these drugs which were formerly designated as COVID-19 drugs. For this purpose, Cx43-transduced cells were exposed to these drugs. The effects on Cx43 hemichannel activity were assessed by measuring extracellular ATP release, while the effects at the transcriptional and translational levels were monitored by means of real-time quantitative reverse transcriptase polymerase chain reaction analysis and immunoblot analysis, respectively. Exposure to lopinavir and ritonavir combined (4:1 ratio), as well as to remdesivir, reduced Cx43 mRNA levels. None of the tested drugs affected Cx43 protein expression.


Subject(s)
COVID-19 Drug Treatment , Connexin 43 , Adenosine Triphosphate/metabolism , Connexin 43/drug effects , Connexin 43/genetics , Connexin 43/metabolism , Humans , Inflammation , Lopinavir/pharmacology , Lopinavir/therapeutic use , Ritonavir/pharmacology
15.
Drugs ; 82(5): 585-591, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1750890

ABSTRACT

Nirmatrelvir plus ritonavir (Paxlovid™; Pfizer) is a co-packaged combination of nirmatrelvir and ritonavir tablets, intended for co-administration and developed for the treatment and post-exposure prophylaxis of coronavirus disease 2019 (COVID-19). Nirmatrelvir is a peptidomimetic inhibitor of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease, while ritonavir is a human immunodeficiency virus type 1 (HIV-1) protease inhibitor and CYP3A inhibitor. Nirmatrelvir plus ritonavir received its first conditional authorization in December 2021 in the United Kingdom, for the treatment of COVID-19 in adults who do not require supplemental oxygen and who are at increased risk for progression to severe COVID-19. In January 2022, nirmatrelvir plus ritonavir received authorization in the EU for use in the same indication. Nirmatrelvir plus ritonavir is authorized for emergency use in the USA. This article summarizes the milestones in the development of nirmatrelvir plus ritonavir leading to its first authorizations and approval for the treatment of COVID-19.


Subject(s)
COVID-19 Drug Treatment , Ritonavir , Adult , Antiviral Agents/therapeutic use , Humans , Ritonavir/pharmacology , Ritonavir/therapeutic use , SARS-CoV-2
16.
Eur J Clin Pharmacol ; 78(5): 733-753, 2022 May.
Article in English | MEDLINE | ID: covidwho-1653434

ABSTRACT

PURPOSE: The coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has affected millions all over the world and has been declared pandemic, as of 11 March 2020. In addition to the ongoing research and development of vaccines, there is still a dire need for safe and effective drugs for the control and treatment against the SARS-CoV-2 virus infection. Numerous repurposed drugs are under clinical investigations whose reported adverse events can raise worries about their safety. The aim of this review is to illuminate the associated adverse events related to the drugs used in a real COVID-19 setting along with their relevant mechanism(s). METHOD: Through a literature search conducted on PubMed and Google Scholar database, various adverse events suspected to be induced by eight drugs, including dexamethasone, hydroxychloroquine, chloroquine, remdesivir, favipiravir, lopinavir/ritonavir, ivermectin, and tocilizumab, administered in COVID-19 patients in clinical practice and studies were identified in 30 case reports, 3 case series, and 10 randomized clinical trials. RESULTS: Mild, moderate, or severe adverse events of numerous repurposed and investigational drugs caused by various factors and mechanisms were observed. Gastrointestinal side effects such as nausea, abdominal cramps, diarrhea, and vomiting were the most frequently followed by cardiovascular, cutaneous, and hepatic adverse events. Few other rare adverse drug reactions were also observed. CONCLUSION: In light of their ineffectiveness against COVID-19 as evident in large clinical studies, drugs including hydroxychloroquine, lopinavir/ritonavir, and ivermectin should neither be used routinely nor in clinical studies. While lack of sufficient data, it creates doubt regarding the reliability of chloroquine and favipiravir use in COVID-19 patients. Hence, these two drugs can only be used in clinical studies. In contrast, ample well-conducted studies have approved the use of remdesivir, tocilizumab, and dexamethasone under certain conditions in COVID-19 patients. Consequently, it is significant to establish a strong surveillance system in order to monitor the proper safety and toxicity profile of the potential anti-COVID-19 drugs with good clinical outcomes.


Subject(s)
COVID-19 Drug Treatment , Drug-Related Side Effects and Adverse Reactions , Antiviral Agents/adverse effects , Chloroquine/adverse effects , Dexamethasone/adverse effects , Humans , Hydroxychloroquine/adverse effects , Ivermectin/therapeutic use , Lopinavir/adverse effects , Reproducibility of Results , Ritonavir/pharmacology , SARS-CoV-2
17.
Nature ; 601(7894): 496, 2022 01.
Article in English | MEDLINE | ID: covidwho-1641925

Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , COVID-19/virology , Drug Development/trends , Drug Resistance, Viral , Research Personnel , SARS-CoV-2/drug effects , Adenosine Monophosphate/administration & dosage , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Adenosine Monophosphate/therapeutic use , Administration, Oral , Alanine/administration & dosage , Alanine/analogs & derivatives , Alanine/pharmacology , Alanine/therapeutic use , Antiviral Agents/administration & dosage , Antiviral Agents/pharmacology , Antiviral Agents/supply & distribution , COVID-19/mortality , COVID-19/prevention & control , COVID-19 Vaccines/supply & distribution , Cytidine/administration & dosage , Cytidine/analogs & derivatives , Cytidine/pharmacology , Cytidine/therapeutic use , Drug Approval , Drug Combinations , Drug Resistance, Viral/drug effects , Drug Resistance, Viral/genetics , Drug Therapy, Combination , Hospitalization/statistics & numerical data , Humans , Hydroxylamines/administration & dosage , Hydroxylamines/pharmacology , Hydroxylamines/therapeutic use , Lactams/administration & dosage , Lactams/pharmacology , Lactams/therapeutic use , Leucine/administration & dosage , Leucine/pharmacology , Leucine/therapeutic use , Medication Adherence , Molecular Targeted Therapy , Mutagenesis , Nitriles/administration & dosage , Nitriles/pharmacology , Nitriles/therapeutic use , Proline/administration & dosage , Proline/pharmacology , Proline/therapeutic use , Public-Private Sector Partnerships/economics , Ritonavir/administration & dosage , Ritonavir/pharmacology , Ritonavir/therapeutic use , SARS-CoV-2/enzymology , SARS-CoV-2/genetics
20.
J Cell Biochem ; 123(2): 347-358, 2022 02.
Article in English | MEDLINE | ID: covidwho-1499273

ABSTRACT

As per the World Health Organization report, around 226 844 344 confirmed positive cases and 4 666 334 deaths are reported till September 17, 2021 due to the recent viral outbreak. A novel coronavirus (severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2]) is responsible for the associated coronavirus disease (COVID-19), which causes serious or even fatal respiratory tract infection and yet no approved therapeutics or effective treatment is currently available to combat the outbreak. Due to the emergency, the drug repurposing approach is being explored for COVID-19. In this study, we attempt to understand the potential mechanism and also the effect of the approved antiviral drugs against the SARS-CoV-2 main protease (Mpro). To understand the mechanism of inhibition of the malaria drug hydroxychloroquine (HCQ) against SARS-CoV-2, we performed molecular interaction studies. The studies revealed that HCQ docked at the active site of the Human ACE2 receptor as a possible way of inhibition. Our in silico analysis revealed that the three drugs Lopinavir, Ritonavir, and Remdesivir showed interaction with the active site residues of Mpro. During molecular dynamics simulation, based on the binding free energy contributions, Lopinavir showed better results than Ritonavir and Remdesivir.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Coronavirus 3C Proteases/antagonists & inhibitors , Hydroxychloroquine/pharmacology , Lopinavir/pharmacology , Receptors, Virus/drug effects , Ritonavir/pharmacology , SARS-CoV-2/drug effects , Adenosine Monophosphate/pharmacology , Adenosine Monophosphate/therapeutic use , Alanine/pharmacology , Alanine/therapeutic use , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/physiology , Antiviral Agents/therapeutic use , Binding Sites , Catalytic Domain/drug effects , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/physiology , Datasets as Topic , Drug Repositioning , Energy Transfer , Humans , Hydroxychloroquine/therapeutic use , Lopinavir/therapeutic use , Models, Molecular , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , Protein Conformation , Receptors, Virus/physiology , Ritonavir/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL